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Abstract: Increasing evidence has been found that chemical reactions affect significantly the terrestrial
nitrogen (N) cycle, which was previously assumed to be mainly dominated by biological processes. Due
to the limitation of knowledge and analytical techniques, it is currently challenging to discern the
contribution of biotic and abiotic processes to the terrestrial N cycle for geobiologists and
biogeochemists alike. To better understand the role of abiotic reactions in the terrestrial N cycle, it is
necessary to comprehend the chemical controls on nitrogenous trace gas emissions and N retention in
soil under various environmental conditions. In this manuscript, we assess the role of abiotic reactions
in nitrous oxide (N2O) and nitric oxide (NO) emissions as well as N retention through a meta-analysis
using all related peer-reviewed publications before August 2020. Results show that abiotic reactions
contributed 29.3—37.7% and 44.0—57.0% to the total N,O emission and N retention, representing
3.7-4.7 and 4.0-6.0 Tg yr! of global terrestrial NoO emission and N retention, respectively. Much
higher NO production was observed in sterilized soils than that in unsterilized treatments indicating the
major contribution of chemical reactions to NO emission and rapid microbial reduction of NO to N.O
and N». Chemical hydroxylamine oxidation accounts for the largest abiotic contribution to N>O emission,
while chemical nitrite reduction and fixation represent for the largest contribution to abiotic NO
production and soil N retention, respectively. Factors influencing the abiotic processes include pH, total
organic carbon (TOC), total nitrogen (TN), the ratio of carbon to nitrogen (C/N), and transition metals.
These results broadened our knowledge about the mechanisms involved in chemical N reactions and
provided a simplified estimation about their contribution to nitrogenous trace gas emission and N
retention, which is meaningful to further study interactions of biologically and chemically mediated

reactions in biogeochemical N cycle.

Keywords: chemical reactions, nitrous oxide, nitric oxide, N retention, terrestrial N cycle
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1 Introduction

Nitrogen (N) is a fundamental element in ecosystems that determines the function and structure of
terrestrial ecosystems in a complex way. After the innovation of Habor-Bosch process, anthropogenic
reactive N input into the environment increased by 125 Tg N yr ! till 1990s compared with pre-industrial
levels (Galloway et al., 2008; Gruber and Galloway, 2008), 9—10 Tg N yr!' of which is immobilized in
soil in terrestrial ecosystems (Zaehle, 2013), 12.52 Tg yr! and 10.99 Tg yr'! of which is emitted into the
atmosphere as nitrous oxide (N,O) and nitric oxide (NO), respectively (Lee et al., 1997; Tian et al.,
2015). Increased N retention have adversely affected terrestrial ecological functions by delaying the
decomposition of organic matter (Dias et al., 2013), changing the biochemical composition of soil
organic matter (SOM) (Gillespie et al., 2014), altering soil biota (Eisenlord and Zak, 2010), and
modifying plant physiology (Langley and Megonigal, 2010). Elevated atmospheric N,O is not only
contributing about 6% to the global climate change but also acting as the currently most important
ozone-depleting substance in the stratosphere (Ravishankara et al., 2009; WMO, 2019). While, NO acts
as a catalyst for the production of atmospheric ozone, radicals, and nitric acid (HNQO3) in precipitation
(Tadic et al., 2021). A better understanding of the complex biogeochemical N processes, as well as the
influence of environmental factors, is mandatory to reduce the negative environmental effects of

anthropogenic reactive N input.

In the last decades, biological processes were considered to dominant the biogeochemical N cycle,
while an increasing number of studies have demonstrated that chemically mediated interactions play
important rules in the formation of N>O, NO, and soil organic N (SON) compounds in terrestrial
ecosystems (Burge and Broadbent, 1961; Nommik, 1965; Nommik and Nilsson, 1963; Ostrom et al.,
2016; Peters et al., 2014; Pilegaard, 2013; Schmidt-Rohr et al., 2004; Stevenson and Harrison, 1966;
Stevenson and Swaby, 1964; Venterea, 2007; Wullstein and Gilmour, 1966). Ammonium (NH4"),
hydroxylamine (NH,OH), nitrite (NO"), and nitrate (NOs5") are the four key reactive N intermediates
from biological N transformations (Fig. 1), NH4+" and NOs, ranging heterogeneously from a few to a
thousand mg N kg! soil, are relatively stable with lower enthalpy of formation compared with NH,OH
and NO,™ (Cruz et al., 2008), while NH,OH and NO,™ generally exit in a range of several pg N kg! soil
to 1 mg N kg! soil in terrestrial ecosystems (Liu et al., 2014; Shen et al., 2003).

Nitrification and denitrification are the main microbial sources of NH,OH and NO, ™ (Fig. 1), which
are mediated by ubiquitous bacteria, archaea, and fungi, accounting for 0.5-5% of the total soil microbial
biomass (Giles et al., 2012). Considerable release of NH,OH into the environment from nitrifiers has
been observed (Kits et al., 2019; Liu et al., 2017b). The acid dissociation constant (pK.) of NH,OH and
NO; is 5.94 and 3.27 at 298 K, respectively, therefore the decomposition of NH,OH is favored by
alkaline pH, while NO,™ by acid pH (Politzer and Murray, 2008; Riordan et al., 2005). N,O is the known
main products of chemical NH,OH oxidation by Fe(Ill), and manganese dioxide (MnO,) at alkaline
conditions (Fig. 1) (Bremner et al., 1980; Heil et al., 2015; Nelson, 1978). Moreover, the -NOH group
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of NH>OH can substitute the oxygen atom of the abundant carbonyl groups (—C=0) in aldehydes,
ketones, acetyl halides, lactams, and esters in SOM, to form aldoximes, ketoximes, and hydroxamic
acids (Fig. 1), which lead to chemically mediated soil N retention (Politzer and Murray, 2008). By
contrast, the chemical reduction of NO,™ by transition metals and SOM lead to considerable production
of N,O, NO, and SON can be produced in soil (Fig. 1) (Jones et al., 2015; Nelson and Bremner, 1970;
Stevenson and Harrison, 1966; Stevenson et al., 1970; Stevenson and Swaby, 1964; Wei et al., 2017b;
Wallstein and Gilmour, 1966).

Amides and amines are the most abundant organic N species contributing more than 50% to SON
(Thorn and Cox, 2009; Vairavamurthy and Wang, 2002), and their extracellular decomposition
catalyzed by proteases can become the main source of free amino groups (-NH>), accounting for 12—
30% of SON (Bremner, 1957). Their microbial mineralization is one of the main source of NH4" in soil.
The fixation of R-NH>, including glycine and cyanamide, as well as NH4*, has been observed in spruce
humus (Chalk and Smith, 1983; Nommik, 1970), and anilides indole, pyrrole, pyridine, and amide could
be the products of abiotic reactions of R-NH» with phenols (Burge and Broadbent, 1961; Schmidt-Rohr
et al., 2004; Thorn and Mikita, 1992). The NO;™ anion, produced through nitrification of NH4*, consists
of one central N atom surrounded by three identically bonded oxygen atoms in a trigonal planar
arrangement, which ensures its low enthalpy of formation (Fig. 1). However, Davidson et al. (2003)
proposed that Fe(II) could reduce NOs™ to NO,™ through the so called “ferrous wheel” mechanism, which
could further chemically react with SOM and transition metals, leading to nitrogenous gas emission and
N retention (Zhu-Barker et al., 2015; Heil et al., 2016). Meanwhile, coupled oxidation of NH4" and
reduction of Fe(IIl) has been reported in anoxic wetland and paddy soils, during which NO,™ or N, are
formed (Clément et al., 2005; Shrestha et al., 2009; Yang et al., 2012), contributing significantly to soil
N loss (Ding et al., 2014).

While the question still remains how much the above abiotic processes contribute to the total
biogeochemical N cycle (Cleemput and Samater, 1996; Heil et al., 2015; Schmidt-Rohr et al., 2004;
Thorn and Mikita, 2000; Vairavamurthy and Wang, 2002; Venterea, 2007; Wei et al., 2017a). To bridge
this knowledge gap, we conduct a meta-analysis using all peer-reviewed publications of the last 55 years
which explore the chemically mediated emissions of N>O and NO, as well as soil N retention in this

integrated manuscript.

2 Material and Method
2.1 Selection criteria and database for meta-analysis

Peer-reviewed publications (before August 2020) related to abiotic N>O and NO emissions, as well
as N retention in soil were selected from the databases Web of Science and Google Scholar using the

nn nn

keywords "abiotic nitrous oxide emission", "abiotic nitric oxide emission", "abiotic nitrogen retention",
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"abiotic ammonium reaction", "abiotic nitrite reaction", "abiotic hydroxylamine reaction", or "abiotic
nitrate reaction”, double searching was conducted by substituting “abiotic” with “chemical”. Searching
results were refined by applying the following criteria to select studies finally used for the meta-analysis:
1) N>O or NO emissions, or N retention was reported after application of a certain N species (NH4",
NH>OH, NO;, NOs, or organic N compounds) in selected studies; 2) a certain approach, such as
autoclaving, irradiation, chemical disinfection, or dissimilar reaction rates, was applied to discern abiotic
reactions from biotic processes; 3) detailed experimental setup including sample size, monitoring time,
N application rate, and soil conditions were reported to normalize chemical N emission or retention rate
for meta-analysis; 4) data in selected studies had to be collected immediately after the application of N
species till the end of the experiment. In total 478 studies at 80 locations were selected as shown in
Fig.2, multiple observations of the same treatment over different time scales were averaged after
normalized based on timescale, and observations of different treatments were regarded as individual
studies. All the selected peer-reviewed publications that met the above requirements are listed in the

Supporting Information (Data S1).
2.2 Performance of meta-analysis

The abiotic N transformation rate (DR) and the contribution of abiotic processes (RR) to N.O
emission, NO emission, and N retention after application of certain N species (NH4*, NH,OH, NO,,

NOs7, or organic N compounds) were quantified as follows:
InDR = In(R; — Ryp) (1)
InRR = In((Rg — Rao)/(Re — Reo)) (2)

where R, and R, stand for the chemical N transformation rate in sterilized treatments with and
without N application, respectively; R, and Ry stand for the total N transformation rate in unsterilized
treatments with and without N application, respectively; R was normalized as N,O-N, NO-N, and SON-
N formation of total applied N per hour (%(applied N) h'!) to compare results in different studies where
monitoring time scales and N application rate varied. R, and R, were used for background correction
and assumed to be zero if no control treatment without N application was reported; the calculation is
based on the assumption that process rates in sterilized soil are representative of abiotic process rates in
live soil. Due to the limited availability of standard deviations of reported mean values in selected

publications, a replication-based weighting method was used in this meta-analysis (Xia et al., 2018):
Weight = (ng X ny)/(ng +nye) (3)
where 71, and n, denote the replicate number of sterilized and unsterilized treatment, respectively.

The meta-analysis was conducted with MetaWin 2.1 (Rosenberg, Adams & Gurevitch, 2000), in
which a bootstrapping of 4,999 iterations was used to generate mean effect sizes and 95% confidence
intervals (CIs). Abiotic processes were considered to contribute significantly to the N cycle if 95% Cls

were higher than zero, while categorical variables were regarded significantly different from each other
4
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in case their 95% Cls did not overlap. According to the availability of related studies, InRR and InDR
were performed with all reactive N species, NH,OH, and NO;™ for N,O emission, all reactive N species
for NO emission, all reactive N species and NH4" for N retention. Spearman correlation analysis was
conducted to explore the linear correlations of InRR and InDR with TN, TOC, C/N, pH, and the contents
of manganese (Mn) and iron (Fe). Furthermore, total nitrogen (TN), total organic carbon (TOC), the
ratio of carbon to nitrogen (C/N), land use type, and soil pH were regarded as category factors by
dividing them into three ranges (<3, 3—10, and >10 mg kg™! for TN; <3, 3-20, and >20 % for TOC; <13,
13-20, and >20 for C/N; <5, 5—7, and >7 for soil pH; cropland, forest, and grassland for land use type)

to study their effects on the biotic and abiotic reactions in the meta-analysis.
2.3 Net effect of abiotic processes in N cycle

The net effects of abiotic reactions in global terrestrial NO and N>O emissions, as well as N

retention, were estimated as follows:
Napiotic = Ntotar X RR 4)

where Ny denotes global terrestrial NoO emission (12.52 Tg yr''; (Tian et al., 2015)), NO emission
(10.99 Tg yr'!; (Lee et al., 1997)), and N retention (10 Tg yr''; (Galloway et al., 2008; Zachle, 2013)).
RR is the average contribution of abiotic reactions to total N>O emission, NO emission, and N retention

obtained from our meta-analysis.

3 Results
3.1 the role of abiotic processes in N,O emission

The meta-analysis of InRR of N,O emission was conducted based on 109 studies, among which 53
and 43 studies focused on abiotic N>O emission derived from NO,  and NH,OH, respectively. Results
showed that abiotic processes contributed on average 33.2% to total N>O emissions, when the reactive
N intermediates NO,~, NOs~, and NH>OH were considered (Fig. 3a), which represents about 3.7-4.7 Tg
yr! of global terrestrial N>O emission. The application of NH,OH to sterilized soils led to the highest
abiotic N>O production rate of 0.6 %(applied N) h'! (Fig. 3d), as well as the largest (50%) abiotic
contribution to the total N>O emission (Fig. 3a). The chemical N>O production rates from NO,™ and
NOs;~ were 2-3 magnitudes lower compared with that of NH,OH (Fig. 3d), while their chemical
reactions accounted for 22-27% less of the total N>O emission than that of NH,OH (Fig. 3a). Across all
studies, the highest abiotic N>O production rate occurred under environmental conditions of TN >10 mg
kg!, TOC >20 %, C/N >20, and pH <5 (Fig. 3d), while the lowest abiotic contribution to the total N,O
emission occurred at conditions of 3—10 mg kg! TN, 3-20% TOC, 1320 C/N, and pH >7 (Fig. 3a).
The land use type did not alter significantly the contribution of abiotic processes to terrestrial N,O

emission (Fig. 3).
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In treatments with NH,OH application, abiotic N,O production rate was significantly (p < 0.05)
higher if TN was <3 mg kg™!, TOC <3%, and C/N <13 compared with higher levels of TN, TOC, and
C/N (Fig. 3e). The lowest NH>OH-related abiotic N>O production rate, as well as abiotic N,O
contribution, was found at pH <5. However no significant differences of abiotic N>O contribution were
observed among different TN, TOC, C/N, and pH levels (Fig. 3b). Spearman correlation analysis
revealed a significant positive correlation of pH (p < 0.01), but negative correlation of TOC (p < 0.05),
TN (p <0.01), and C/N (p < 0.01) with abiotic NH,OH-derived N>O production rate in soil (Table 1).
Similarly, Mn content was significantly (p < 0.01) positively correlated with NH,OH-derived abiotic
N0 production rate, but not with abiotic N>O contribution (Table 1).

On the contrary to NH,OH, the highest abiotic N>O production rate of NO, was observed under
environmental conditions of TN >10 mg kg™!, TOC >20%, and C/N >20 (Fig. 3f). In contrast, chemical
reactions contributed the least to the total NO, -derived N>O emission when TN was between 3—10 mg
kg!, TOC between 3—20%, and C/N between 13—20 (Fig. 3c). Regardless of the significantly higher
NO; -derived chemical N>O production rate at pH <5, there was no significant difference of abiotic N,O
contribution among pH levels of <5, 57, and >7 (Fig. 3¢ and f). According to Spearman correlation
analysis, TN and TOC contents were significantly (p < 0.01) positively correlated with the abiotic N.O
production rate of NO;™ (Table 1).

As the mostly important N>O-precursors, NO, ™ and NH,OH behaved completely differently to the
changes of environmental conditions. Chemical N>O production rate of NO, increased linearly with
increasing In(TOC) and In(TN), as well as decreasing In(Mn). On the contrary, InDR of NH>OH-derived
abiotic N>O emission decreased linearly corresponding to increasing In(TOC), In(TN), and decreasing
In(Mn) (Fig. S1). The InDR of abiotic N>O production was positively linearly (p <0.01) correlated with
In(pH) when NH>OH, but not NO,~, acted as N>O precursor (Fig. S1). However, except for the positive
(p < 0.05) linear correlation of In(pH) with InRR of NO, -derived N>O emission, no other significant
correlation was observed between environmental conditions and InRR of N,O emission, neither after

NO: application nor after NH,OH application (Table 1, Fig. 4).

3.2 the role of abiotic processes in NO emission

The meta-analysis of the contribution of chemical reactions to the total NO emission and abiotic
NO production rate was conducted based on 26 and 58 studies, respectively, most of which focused on
the NO, -related chemical NO production. Unexpectedly high contribution (82—149%) of abiotic
reactions to the total NO emission was found because of the much higher NO emission in sterilized soils
than that in unsterilized treatments (Fig. 5a), and 9.0-16.3 Tg yr! of global terrestrial NO emission was
attributed to abiotic reactions according to Eq. 4. Similar to N>O, the lowest contribution of chemical
reactions to total NO emission occurred at intermediate ranges of TN (3—10 mg kg™!), TOC (320 %),
C/N (13-20), and pH (5-7) (Fig. 5a). Among all the studied reactive N intermediates, chemical

6
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decomposition of NO, represented the fastest abiotic NO production rate, which was two orders of
magnitude higher than for the other N intermediates (Fig. 5b). The overall abiotic NO production rate
was about 2.4-3.5 x107 %(applied N) h'!, and was lowest at the lowest TN (<3 mg kg!), TOC (<3 %)
and C/N (<13) levels, and the highest pH (>7) range (Fig. 5b).

According to the Spearman correlation analysis, pH was significantly (p < 0.01) negatively
correlated with abiotic NO production rate (InDR), but positively (p < 0.05) correlated with abiotic
contribution to total NO emissions (InRR) (Table 1). After natural logarithm transformation, the abiotic
NO emission rate was positively linearly correlated with In(TOC) (p < 0.05), In(TN) (p < 0.01), In(Fe)
(p < 0.01), and In(Mn) (p < 0.01), while negatively correlated with In(pH) (p < 0.01) (Fig. S3). By
contrast, InRR of abiotic NO contribution was also significantly (p < 0.05) linearly correlated with

In(TOC), In(TN), In(pH), and In(Mn) (Fig. 6).
3.3 the role of abiotic processes in N retention

According to the meta-analysis of the available 113 studies, abiotic processes contributed on
average 44—57% to total N retention, standing for about 4.4-5.7 Tg yr'! of global N retention. The abiotic
contribution to N retention highly depended on the N precursors, increasing in the order: NO,™ > NOs~
> NH4" (Fig. 7a). The lowest abiotic contribution to N retention was found for the TN range of 3—10 mg
kg!, but differences were not significant among the three levels of TOC, C/N, and pH (Fig. 7a). When
NH4" acted as the precursor of N retention alone, the abiotic contribution to N retention averaged at
25-36 % (Fig. 7b), and InRR was significantly (p < 0.05) positively correlated to In(TOC) and In(TN),
but negatively (p < 0.01) to In(pH) (Fig. 8). When NO;™ acted as the reactive N intermediate alone, the
average abiotic contribution to the total N retention was around 66 %, and InRR was significantly (p <
0.05) positively correlated to In(TOC) and In(TN) (Fig. 8). Even though NO,™ contributed the highest
share to abiotic N retention, InRR of NO, -derived N retention was neither significantly correlated to

C/N, TOC, TN, pH, nor to their natural logarithm transformed values (Table 1 and Fig. 8).

The average abiotic N retention rate was 0.8—1.0 %(applied N) h™! based on the 251 studies, in
which NH4", NH,OH, NO>, and NO;™ acted as precursors, and the abiotic N retention of NO3~, followed
by NH,OH, turned out to be the fastest among all the four common reactive N intermediates (Fig. 8c).
Environmental conditions including TN, TOC, C/N, and pH affected largely the abiotic N retention rate,
which turned out to be the highest at TN >10 mg kg'!, TOC >20 %, C/N >20, and pH <5 (Fig. 8c). In
addition, a significant (p < 0.01) linear correlation was found between InDR of abiotic N retention and
In(C/N), In(TOC), In(TN), and In(pH) (Fig. S4). The land use type did not change significantly the
contribution of chemical reactions to total terrestrial N retention, but abiotic N retention rate was

significantly higher in forest than that in cropland and grassland (Fig. 7).
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4 Discussion
4.1 Abiotic N,O emission

Chemical reactions of NO,™ and NH,OH are currently the mostly studied abiotic N>O sources, while
the attribution of chemical reduction of NO;™ to N>O has been explored only in a few studies (Fig. 3).
Biological production of NO; is regulated by nitrification and denitrification, while its microbially
mediated consumption is catalyzed by nitrite reductase (NiR) and hydrazine synthase (HZS) during
denitrification, nitrifier denitrification, and anaerobic ammonia oxidation (anammox), respectively (Fig.
1). Therefore, nitrifiers, denitrifiers, and anammox compete with transition metals and SOM for NO,~

in terrestrial systems (Heil et al., 2016).

Transition metals and SOM are among the most important reactants with NO,™ to form N,O in
chemical and microbial-mediated N-nitrosation reactions (Liu et al., 2017a; Spott et al., 2011; Van
Cleemput and Baert, 1983; Wei et al., 2020). Compared with SOM, the reduction rate of NO, by
transition metals is much faster, and no catalyst is required for the reaction (Guerbois et al., 2014; Van
Cleemput and Baert, 1983; Wullstein and Gilmour, 1966). Contents of TN and TOC were significantly
(p <0.01) positively correlated with the InDR of NO, -derived abiotic N>O emission, and the InRR of
chemical reduction of NO;™ to the total N>O emission was significantly (p < 0.05) positively correlated
with Fe content (Table 1). Based on '°N tracer modelling, Miiller et al. (2014) found that N,O production
associated with the reactions of NO, with SON accounted for about 54% of total N>O emission in

terrestrial ecosystems.

The production of NH,OH is controlled by the ammonia monooxygenase (AMO) activity, while
its consumption is regulated by microbial oxidation and various chemical reactions (Liu et al., 2017c).
In a series of batch experiments, N>O production rate of chemical NH,OH oxidation tended to be 1-3
orders of magnitude higher than that of biological processes (Harper et al., 2015). Even though
environmental factors significantly affect the chemical N,O emission rate of NH,OH (Table 1, Fig. 3),
they also regulate the microbial NH,OH production and consumption (Ermel et al., 2018). As a
consequence of the bidirectional regulation, the apparent contribution of abiotic NH,OH oxidation to
the total N>O emission was not significantly influenced by environmental factors (Table 1, Fig. 3).
Alkaline pH strongly promotes the self-decomposition of NH>OH to form N»O (Heil et al., 2016), which
explains the significant (p < 0.01) positive correlation of pH with the InDR of NH>OH-derived abiotic
N0 production (Table 1).

4.2 Abiotic NO emission

Nitrite is the direct precursor in both microbial and chemical NO production processes (Islam et
al., 2008; Medinets et al., 2015; Riordan et al., 2005), and reduction of NO by nitric oxide reductase
(NOR) represents the main NO sink (Pilegaard, 2013). Much higher NO emission in sterilized treatments

than that in unsterilized ones was reported in many studies (Duan et al., 2020; Homyak et al., 2017;
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Wang et al., 2019; Wei et al., 2017a), which resulted in a RR of NO emission much higher than 100%
(Fig. 5a). In microbial pathways, NO is released as a by-product from denitrification (Heil et al., 2016),
and microbial NO emission is slowed down when NO is rapidly reduced by NOR to N>O and N
(Pilegaard, 2013). By contrast, chemically produced NO in sterilized soils is directly emitted into the
atmosphere due to the lack of active NOR. The much higher RR of NO emission than 100% indicates
that microbial reactions play as very likely a sink of NO especially in situations where NOR is highly

active.

The role of chemical NO™ conversion in NO production was first considered in a process-oriented
model in forest soils (Li et al., 2000), and the meta-analysis in this study revealed that chemical
decomposition of NO,™ represented the highest abiotic NO production rate (Fig. 5). Transition metals,
namely elements with partially filled d-orbitals, or which can form cations with partially filled d-orbitals
according to IUPAC (1997), have very dynamic valence with a shape-shifting nature. They include iron
(Fe), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), cobalt (Co), and molybdenum (Mo), among
which Fe (7-550 g kg') and Mn (20—-3000 mg kg'!) are the most abundant ones in soil and they are
generally thought to play a more important role in biogeochemical N cycle than others (Lindsay, 1979).
The redox potentials (E;) of Fe(Ill)/Fe(Il) (+0.771 V) (Li et al., 2019) and Mn(IV)/Mn(III) (+2.01 V)
(Yamaguchi and Sawyer, 1985) are much higher than that of NO;/NO,™ (+0.42 V) and NO,/NO
(+0.375 V) (Berks et al., 1995). Therefore, the chemical reduction of NO;™ and NO, to NO by Fe and
Mn complexes, indicated by the significant (p < 0.01) correlation of chemical production rate of NO
with the contents of Fe and Mn in soil (Fig. S3), occurred most likely in combination with other redox

pairs.

Except for NO,™ reduction by transition metals, the chemical reaction of NO,~ with SOM accounts
for the other main chemical NO source. Our finding that TOC content was significantly positively
correlated with the abiotic production NO rate (Figs. S3) is in agreement with previous studies (Fitzhugh
et al., 2003; Opuwariboi and Odu, 1975). In this regard, the quality of SOM plays a more important role
than quantity, e.g., the chemical NO production rate of NO,~ with SOM fractions decreased largely in
the order: humin > humic acid > fulvic acid (Wei et al., 2017a). By contrast, higher abundance and
activity of microbial NO, reducers are in line with higher TOC content, which was negatively correlated

with InRR of NO emissions (Fig. 6) due to the large promotion of biotic NO production (Fig. S4).
4.3 Abiotic N retention

By contrast to the microbial N retention, chemical N retention pathways involve various reactions
of NH4*, NO;~, and NOs~, among which the chemical immobilization of NO,™ represented the highest
abiotic contribution to total N retention (Fig. 7). Despite the argument that the chemical reduction rate
of NO;s™ is too slow to make a difference in the N cycle (Colman et al., 2007, 2008), it has been found
that microbially mediated oxidation of Fe(Il) and reduction of NO;~ are commonly co-occuring under

various environmental conditions (Chakraborty and Picardal, 2013; Mueche et al., 2009; Straub et al.,
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1996), resulting in abiotic NO3~ immobilization in organic N compounds (Corre et al., 2007; Dail et al.,

2001; Torres-Canabate et al., 2008).

The fixation of NH4" by mineral clay particles or SOM was first observed decades ago. When NH4"
penetrates the interlayers of clay minerals, it sheds its hydration water shell and enters the lattice voids,
leading to physical NH4" fixation (Kittrick, 1966; Nommik, 1965). Except physical NH4" fixation, it was
demonstrated that NH4" can also be chemically fixed into SON through reactions with SOM, especially
at alkaline pH and in the presence of oxygen (Broadbent, 1960; Nommik and Nilsson, 1963).

Formation of organic N compounds was also found for the abiotic reactions of HNO, with SOM
components. For example, 7-hydroxy-6-methoxy-1,2(4H)-benzoxazin-4-one was produced in the
chemical reaction of HNO, with ferulic acid (Rousseau and Rosazza, 1998), nitrosophenol, p-
diazoquinone, and o-diazoquinone in the case of phenol (Kikugawa and Kato, 1988), nitrosonaphthol
and nitronaphthol in the case of naphthol (Azhar et al., 1989), nitroso and heterocyclic compounds in
the case of humic and fulvic acids (Thorn and Mikita, 2000). Heterocyclic and nitro-aromatic
compounds are common organic N compounds resulting from abiotic reactions, and they have received
increasing interest in the last years due to their resistance to decomposition (Leinweber et al., 2009).
Heterocyclic compounds like pyrroles and pyridines, pyrazines, nitriles, and imines have been detected
in various natural humic substances (Thorn and Cox, 2009), and the content of heterocyclic N was found
to increase during humification (Abe et al., 2005). Gillespie et al. (2009) also found that nitro-aromatic
compounds do exist in the rhizosphere of pea, accompanied by a decrease of aromatic C compounds.
This suggest that the long-term N retention could be caused by the increase of heterocyclic and nitro-

aromatic N compounds from chemical N immobilization in soil (Thorn and Cox, 2009).

Higher TOC content provides more active sites for N intermediates, hence TOC content was
significantly (p <0.01) positively correlated with the abiotic N retention (Fig. S5), which is in agreement
with previous studies (Fitzhugh et al., 2003; Opuwariboi and Odu, 1975). On the one hand, higher pH
reduces the reactivity of NO, (Corre et al., 2007; Fitzhugh et al., 2003), on the other hand, it also inhibits
the solubility of most transition metals and decreases the activity of SOM electrophilic functional groups
including —C=0, —OH, and —COOH (Stevenson, 1995). In line with these mechanisms, our meta-
analysis revealed a significant negative linear correlation of In(pH) with InDR of abiotic N retention

(Table 1).
4.4 the role of abiotic processes in the terrestrial N cycle

Sterilization of environmental samples is generally applied to distinguish the N gas emission or N
retention from chemical reactions, however, its influence on soil properties and structure cannot be
avoided. Chemical reactions are generally regarded to be much faster compared with biological
processes, the approach of time difference, i.e. the difference between short-term (10—30 min) and long-
term (more than 6 h) N transformation processes, is sometimes used to estimate the contribution of
abiotic processes (Corre et al., 2007; Wang et al., 2019). Highly energetic irradiation destroys microbial
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enzymes and cell components, while high-pressure steam autoclaving damages microbial cell
membranes and proteins; and both processes decrease soil aggregation, increase dissolved organic
matter (DOM) content, and decrease the aromaticity and polycondensation of DOM (Berns et al., 2008;
Buessecker et al., 2019). Cell lysis occurs during chloroform fumigation, but enzyme activities are less
inhibited (Blankinship et al., 2014). On the opposite side, chemical inhibitors generally efficiently
inhibit the activities of microbial enzymes, but also change the soil chemistry at the same time
(Buessecker et al., 2019). Azide, for example, can react with DOM and pyrite, lowering the reducing

capacity of the microcosm, and form N>O and NO with soil-derived NO>~ (Hendrix et al., 2019).

The chemical N retention rate estimated based on the time difference approach was about two
orders of magnitude higher than that of other sterilization techniques, while the lowest abiotic N
retention and N>O production rates were observed in irradiated samples (Fig. 9). No soil disturbance
occurs when the time difference approach was applied, but the existence of biological processes in the
short term, which might be much faster rather than negligible, could account for the overestimation of
abiotic N retention rate (Kizewski et al., 2019; Zhu and Wang, 2011). Even though irradiation increased
DOM content, the chemical reactivity of DOM could be slightly inhibited due to the decrease of
aromaticity of DOM (Berns et al., 2008), while the influence of chemical inhibitors on abiotic reactions
highly depends on their interactions with SOM and transition metals, which explains their differences
in abiotic reaction rates (Fig. 9). Estimated on the basis of our meta-analysis results, abiotic reactions
account for approximately 3.7-4.7, 9.0-16.3, 4.0-6.0 Tg yr'! of global terrestrial NoO emission, NO
emission, and N retention, respectively. However, we have to keep in mind these results were calculated
based on the simplified calculation (Equation 4), uncertainties can be caused by different sterilization
techniques, land use types, soil conditions. More research data at various environmental conditions are
needed to develop a more sophisticated model for a more precise estimation of abiotic reactions in global

N cycle.

To gain complete understanding of the role of chemical reactions in the biogeochemical N cycle,
efforts have to be made to disentangle biotic and abiotic processes in terrestrial ecosystems. Empirically
derived rate laws have been applied to quantify abiotic N transformation processes without disturbance
of local soil conditions (Liu et al., 2019; Stanton et al., 2018). Stanton et al. (2018) suggested that N,O
production from chemical reduction of NO by Fe(Ill) followed a rate law of d[N,OJ/dt =
7.2x1075[Fe(I)]>*[NOY]!, sustaining an N>O flux of 100—200 Tg N yr! across an oceanwide oxycline
for the Proterozoic era (2.5—0.5 billion years before present). A first order fitting (d[N,OJ/dt =
k[NH,OH]*°[MnO,]%3) was also reported to model the kinetics of NH,OH oxidation by Mn(IV) oxides
(Cavazos et al., 2018). By contrast, Liu et al. (2019) also reported that the kinetics of NO;~ and NO,~
reduction by Fe(Il) with or without microbial mediation was well fitted with a pseudo-first-order model
to quantify the N>O and NO production from these reactions. One of the major drawbacks of these
models is that the pH effect and the mineral formation on the redox interaction surface were not

considered, despite their significant influence on reaction kinetics (Chen et al., 2020).
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Isotopic signatures have been widely used for process identification and source partitioning.
Differences of N fractionation factor (¢'°N) of abiotic and biotic NOs~ reduction were found in
laboratory studies, while €°N of abiotic NO,™ reduction was not significantly different from that of
biotic NO;™ reduction (Buchwald et al., 2016; Margalef-Marti et al., 2020; Margalef-Marti et al., 2019).
The "N site preference (SP) of N>O was regarded as an efficient tool to partition N>O sources (Toyoda
and Yoshida, 1999). Although significant differences of N,O SP values were found between biological
processes, e.g. nitrification and denitrification (Toyoda et al., 2017), the SP of N,O from abiotic
oxidation of NH,OH (34-36 %o) is overlapping with that of biotic nitrification (Heil et al., 2014).
Furthermore, the SP value of N,O varied largely in reactions of NO,~ with lignin derivatives, and this
variation was affected by both pH and the structure of the organic substances (Wei et al., 2019; Wei et
al., 2017b). It has also been reported that N>O sources were biased when SP was used for N,O source
partitioning without considering N,O production from abiotic NO, —SOM reactions (Wei et al., 2017a).
Notably, the isotopic signatures of N,O from abiotic NO, reactions are undistinguishable from the other
N2O pathways, such as NH,OH oxidation, fungal denitrification, nitrifier denitrification, and bacterial
denitrification (Ostrom et al., 2016; Peters et al., 2014; Wei et al., 2017b), which limits greatly the use

of current N>O source partitioning tools.

The diverse microbially and chemically mediated reactions make it challenging to quantify the
biotic and abiotic contribution to the biogeochemical N cycle: i) Chemical and microbial electron
transfer processes support but also compete with each other. Microbial processes are not only sources
of reactive N intermediates but also compete with chemical reactions for these intermediates. ii) The
microbial and chemical electron transfer rates are both highly affected by environmental conditions
(redox potential, pH, radicals, etc.). Nevertheless, knowledge is currently limited about their integrated
interactions on microbially and chemically mediated biogeochemical N transformations. iii) Different
sterilization techniques disturb soil properties, and depending on whether the changes of soil properties
lead to up- or downregulation of the chemical reaction rates, the contribution of chemical reactions to
the biogeochemical N cycle could be either overestimated or underestimated. iv) Research is scarce in
terms of basic reaction rates, isotopic signatures, and environmental influences of microbially and
chemically mediated reactions and their interplay in terrestrial ecosystems. Future studies should
emphasize the relative contributions of chemical and enzymatically catalyzed processes in the
biogeochemical N cycle. Except traditional control experiments using sterile techniques, alternatives
such as modelling and advanced isotopic techniques, e.g. clumped isotopic techniques, should be

included in future experimental approaches to distinguish abiotic reactions from biotic processes.
5 Conclusions

Soil microbes act as main drivers of the N flow in soils, during which reactive N intermediates,
such as NH4*, NO,, NH,OH, NOs~, amino acids, and amino sugars, are released to terrestrial

ecosystems. Transition metals, phenols, humus, and organic radicals are chemically highly reactive to
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these N intermediates. Various abiotic reactions occur once these reactive compounds get in contact
with each other, leading to abiotic N gas emission and soil N retention. This meta-analysis has
demonstrated that these abiotic reactions of reactive N-intermediates, derived from biotic processes,
play an important role in the terrestrial N cycle: abiotic reactions account for approximately 3.7—4.7 and

4.0-6.0 Tg yr'! of global terrestrial N,O emission and N retention, respectively.

Although traditional control experiments with sterilized soil can help to discern chemically
mediated N transformations, it fails to discern the potential interplay of biotic and abiotic processes, €.g.
NH,OH production from microbial NHs" oxidation with AMO, followed by both/either chemical
NH:;OH oxidation by Fe(Ill) and/or microbial NH,OH oxidation by HAO. Current standard
experimental approaches should be adapted by integrating sterilized and unsterilized control design,
modelling, and isotopic techniques. Further kinetic, isotopic, and modelling studies of involved biotic
and abiotic reactions would provide biogeochemists with tools for a better understanding of the complex

interplay of biologically and chemically mediated reactions in the biogeochemical N cycle.
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Table 1. Spearman correlation of environmental conditions with the contribution of chemical reactions to total N,O emission, NO emission, and N retention

(InRR), as well as abiotic N,O production, NO production, and N retention rates (InDR).

N20 NO N retention
all N species NH20H NOz~ all N species all N species NH4* NO2~ NOs~ Others
InDR InRR InDR InRR InDR InRR InDR InRR InDR InRR InDR InRR InDR InRR InDR InRR InDR

TOC -0.056 -0.013  -0.351"  0.042 0360  -0.108 0.366™  -0.470" 0.484" 0.071  0.308™  0.314°  0.729™  -0.085 0.809™ 0.405 0.819™
N 0.203" -0.043 -0.457" 0.006 0.327"  -0.170 0.331° -0.476" 0.383* 0.087 0.110 0.364°  0.705™  -0.314 0.623™ 0.422 0.805™
C/N 0.050 0.073  -0.410™ 0.120 0.090 -0.075 0.212 -0.348 0.362*" -0.002  0.322™ 0.188 0.376™  -0.042 0.749™ 0.030 0.780™"
pH 0.065 0.085  0.441™  0.000 0.003 0.119 -0.506™" 0.442" -0.389"" -0.096  -0.248"  -0.388" -0.782"  0.156 -0.851" -0.218 0.413"
Fe -0.107  -0.064  0.112 -0.212 0.225 0.482" 0.053 0.188 - - - - - - - - -
Mn 0.370"  0.023  0.497" -0.119 -0.461" 0.242 0.675™ -0.324 - - - - - - - - -

Note:

*p<0.05;
“p<0.01
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Fig. 1. Microbial processes and associated chemical reactions within the biogeochemical N
cycle in soil, listed according to the N oxidation number of involved N species. Microbial
nitrification, denitrification, nitrifier denitrification, anaerobic ammonia oxidation (Anammox)
and dissimilatory nitrate reduction to ammonium (DNRA) are shown on the left-hand side,
which are catalyzed by ammonia monooxygenase (AMO), hydroxylamine oxidoreductase
(HAO), nitrite oxidoreductase (NXR), nitrate reductase (NaR), nitrite reductase (NiR), nitric
oxide reductase (NOR), nitrous oxide reductase (N2OR), hydrazine synthase (HZS), and
hydrazine dehydrogenase (HDH), and nitrite reductase (nrfA). Reactive N intermediates in soil
produced from microbial processes mainly involve free amino-compounds (R-NH>),
ammonium (NHy4"), hydroxylamine (NH.OH), nitrite (NO,"), and nitrate (NO;"), their chemical
reactions with soil organic matter (SOM), transition metals (M"/M*"; mainly iron and
manganese), and oxygen (O) are shown on the right-hand side. Enthalpy of formation of N

species at 298 K.
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Fig. 2. Location of study sites included in the mate-analysis.
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